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We compute the Euler Function which appears in the evaluation of second order energies 
of Fermi Liquids for the case where the single particle energies are given by a reference 
spectrum approximation, namely c,(k) = fi2ke/2e + A, (with a similar expression for hole 
energies). It is found that the Euler Function for the case rnz = mz but A, # A, can be 
obtained analyticaIly, and is a useful approximation to the exact Euler Function. 

I. INTRODUCTION 

In many Fermi liquid calculations one requires the second order contribution 

where the primed summation runs over I k, 1, I k, I < kF , U and V are two body 
operators (usually potentials), Q is the Pauli exclusion operator and e is the energy 
denominator. As examples we cite the long range potential contribution to the energy 
of nuclear matter [I] 

(2) 

and the contribution of three body forces and long range forces to the nuclear matter 
energy [2]. 

Em = 1’ <k&s I vt 9 VQ I WG. 
“lb 
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To evaluate expressions of the type (1) we introduce a complete set of intermediate 
states m, , m2 , so that (1) becomes more explicitly 

E - 00, I u I m1m2Xm1m2 I v I klk2) 
CJV - 

,,,,&.:,, 4W + 4k2) - 4mJ - 4m2) ’ 
(4) 

;ml/&>kk 

The energy denominator e has now been explicitly written in terms of the single 
particle energies c(k). To further evaluate (4) we make the assumption that the matrix 
elements are of a local potential and conserve the total momentum,l writing 

ml = kl + q 

m, = k, - q 

<k,k, 1 u 1 “‘l’%> = (l/G) ~kl+k2,ml+m, U(q), where Q is the normalization volume, 
with a similar definition of V(q), and we replace the summations by integrations in the 
usual way. 

Then we rewrite (4) as 

d3q u(q) U-q)gc (E) (5) 

where 

1 
dkl dkz c(k,) + c(k,) - e(k, + kFX) - c(k, - kFX) (6) 

which is a function only of j X 1, but is a functional of E. The domain of integration D 
is determined by the requirements that kl and k, are inside the Fermi Sea, while 
kl + XkF and k, - XkF are outside. 

For the case of a free energy spectrum, 

this function g was evaluated by Euler [3]. In this case we set g, = g, 

gF(I X I) = & j” dx, d%z 
1 

D’ x * (X + x1 - x2) 

where dimensionless momenta ni = kJkF have been introduced and the domain D’ is 

D’ = {x1 , x2 I 1x1 ! < 1, I x‘2 I < 1, I Xl + x I > 1, I x2 - x j > 1). (9) 

1 This is the case in an infinite system, such as nuclear matter or liquid aHe. It would not be the 
case for a shell model calculation for a finite nucleus in an harmonic oscillator basis. 
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Following Levinger et al. [4], we introduce the Euler Function P, so that with 
2u= 1x1 

UP,(U) = 12Ou~g,(2u) (10) 

Brown [5] also introduces an Euler Function P which is 1/15th of that of this work. 
Equation (5) may then be rewritten as 

writing the vector q in terms of its magnitude 4 = 2uk,, and its direction 52,. In the 
free spectrum case, Euler obtained the result 

PF(U) = PI(U) lu/< 1 

= Pdu) IUI > 1 
where 

P,(u) = (4 + $fiu - 5u3 + $23) ln(u + 1) 
+ (29~~ - 3u4) - 40u2 In 2 
+ (4 - y25-u + 5u3 - 3~“) ln(1 - u) 

Pz(u) = (4 - 20u2 - 20u3 + 423) ln(u + 1) + 4u3 
+ 22~ + (-4 + 20u2 - 20u3 f 4u5) ln(u - 1) 
+ (40u3 - 8u5) In u. 

(12) 

(13) 

The subscript F distinguishes the Free Spectrum Euler Function P, from the general 
case P, . This function is discussed in more detail by Levinger et al. [4], da Providencia 
[6] and in the appendix. 

At present the most commonly used approximation to E(k) is the quadratic 
Reference Spectrum [7] 

e(k) = & k2 + A, for I k / < kF (154 
h 

c(k) = & k2 + A, for Ikl >k,. 
P 

(15b) 

The subscripts h andp refer to holes and particles. There is currently some controversy 
over the best values of the parameters [S]. But a common choice is [9] 

4 = 0.65m 

A =212gk2 
h ’ 2m 

m,* = m 

A, = 0. 

(16) 
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It is our purpose in this paper to discuss the Generalized Euler Function for this case. 
In Section 2 we consider the special case rn$ = rng . In this case we can obtain a useful 
analytic expression for g(q). Then in Section 3 the case rnt # rng is considered. An 
analytic result is not possible in this case, but we can reduce the problem to a double 
numerical integration.2 It turns out that the analytic expression of section (2) is a good 
approximation to g(q) in this case also, at least for the parameter values of interest. 
Section 4 contains an example of the use of this generalized Euler Function in the 
computation of second order energies. 

2 m* = m* z m* . h 2, 

This case is similar to that considered by Euler, in that no quadratic terms in k, or 
k, appear. It is this which makes the analytic result possible. In this case 

gm,=,;(‘) = z .,, w 6 + X . (X1+ k, --k) 2 
where 

s +&I,-Ad,). 

The appropriate Euler Function we write as P(u, m*, 6) 

gmicms(q) = (120~)~~ P(u, m*, 6) 

P(u, m*, 8) = $ jD, 9 6 + 2u(2u3puKlx _ K22) 

(18) 

(19) 

where, we can take X to lie along the x axis without loss of generality, since the 
integral depends only on ( X ; = 2~. 

Once again the integral takes on two forms according as u > 1 or u < 1. For u > 1, 
the domain of integration D’ becomes independent ot U, since 1 K & X 1 > 1 for 
1 X / > 2 or u > 1. In this case u appears only in the integrand, and comparing the 
integral with that in the appendix we see that 

P(u, m*, 8) = $ P, (u + $-I for zl>l. 

This relation was noticed by Brown et al. [lo], and was proposed by them as an 
approximation to P(u, m*, 6) for all u in the spirit of the reference spectrum approxi- 
mation for calculating nuclear matter energies, in which the Pauli Principle is ignored 
[7]. The result (20) was also given in detail by Sprung [l I]. 

e It is possible to do a further integration analytically, reducing the evaluation to just one numerical 
integration. But the numerical evaluation in this case is quite unstable, and the double numerical 
integration is to be preferred. 
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Equation (20) implies that as u ---f co, P(u, m*, S) - m*/m * 10/3 . u-l. However, 
in this case an analytic result can be obtained also for u < 1. The algebra is some- 
what tedious, and is outlined in the appendix. The final result is, for u < 1, 

P(u, m*, 8) = g 12024 i Ji(u, 8) 
i=O 

Jo=&(;~+5-uq~+l]) 

and for i = l,..., 6 

TABLE 1 

The Polynomials &(y), &(Y)~ and Limits yy) and yc b 

(21) 

(22) 

(23) 

i - t (2e, $ u)~ +I + u) 
I 
2 0 e3 es 

4 
-s/2 --u 3 0 0 =I e3 

tyJ2u --PI2 3e, 
+ + 1 

e,/2u 
1 

- - 3u 5u e4 E, 

1 
e3 f (u - 2e, - 3) 2 0 e3 e-1 

@I + akd2u 
-(el + uY + 3(e, + u) + I 1 

3u e&u - su es e, 

1 
ej i (-u - 2e, - 3) 

2 
0 6 eT, 

“q&(y) = 5 uji’yj, $j(y) = 5 (j + 2)-‘c~:~)y~, and a:’ are tabulated. 
i=O j=O 

b Ii) and yfiJ are selected from the six values e, = S/4u, e2 = et + I, e, = e1 + & - 4 ~1, e1 =: YL u 
e, + 1 - u, e5 = e, + 4 + $4, e, = e, + 1 + u. 

The values of vf’, J$‘, and the polynomials C#J~ and Q!Q are given in Table I. From 
this table it is apparent that the Iimit u - 0 is somewhat delicate in the expansion of 
Eq. (21). It is most easily obtained from the integral (I 9), since as u + 0 the integrand 
becomes 2u/& approximately independent of K~ and K2 . The integrals are then inde- 
pendent and straightforward (see e.g. Pines [12]), and give 

m* 30u3 
P(u,m*, 8) w m T as 24 - 0 for finite 6. (24) 
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This is to be compared with 

PIG4 m y (1 - In 2) zi2 as 24 ---f 0, (25) 

showing that the introduction of the energy gap d causes a more rapid approach to 
zero. 

Figure 1 shows P(u, m*, 6) for m* = m* = 0.65m and S = 0 and 6 = 
.65 x 2.12 = 1.38. PF(u) is shown for comparison. As would be expected, an 
effective mass less than the free nucleon mass and the energy shift d both reduce P, 
since they increase the energy denominator. 

0 1 2 3 ll 

FIG. 1. Curve A is UP&), curve B is (m*/m) u P&), and curve C is UP@, m*, 8). The numerical 
values used are m* = 0.65 m and S = 0.65 x 2.12. 

3. THE GENERAL CASE 

When the effective mass of the holes is different from the effective mass of the 
particles it is no longer possible to do all of the integrations analytically. In this case 
the energy denominator becomes 

A2kF2 e=-- 
mp* I 

8 + x * (X + x1 - %)+;(I -+)(K,z+K22,~. (261 

Following the same type of manipulations as before, we can carry out the y, z, y’, z’ 
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integrals analytically, but the quadratic terms in Eq. (26) prevent further progress, 
and the x and x’ integrals must be evaluated numerically.2 The result is 

P&4) = -30 2 u (3 - 1 )-I j-E dx dx’ 1(x, x’, u) 

where we have used the subscript RS for the general Reference Spectrum Euler 
Function. The integral is over the domain E(u) = E,(u) u E,(U) u Es(u), where 

E,(u)={(x,x’)j-I <x<d(u),--1 <x’<x} (284 

E,(u) = {(x, x’) I --I < x < d(u), d(u) < x’ < u> if O<u<l 
=ia if u>l. Wb) 

Es(u) = {(x, x’) I d(u) < x < u, d(u) < x’ < x} if O<u<l 
=@ if u>l (284 

and 

d(u) = min{-1 + 2u, I}. (284 

The integrand 1(x, x’, u) is given by 

Z(X> x’, 4 = P ln cp _ u)(p _ T) P(P-a-T7) +01np<~~7 +5-lnPp~~~ (29) 

p, u, and T are functions of x, x’, and u. 

p=2-4 
i 

and the functional expressions for 0 and T depend on the location of (x, x’) in the 
domain of integration. 

and 

For (x, x’) E E1 , 0=1-J? and 7 = x12, (314 

for (x, x’) E E, , 0=1--x2 and 7 = 4U(U - x’), @lb) 

for (x, x’) E E, , u = 4u(u - x) and 7 = 4U(U - x’). (31c) 

The limits u --f 0 and u --f co can again be calculated independently. As u -+ co the 
terms involving X in Eq. (26) dominate the energy denominator, so P&U) approaches 
the free Euler Function, up to a factor mz/m. 

* 10 P&U) M 2 * 7 u-1 as u--+co. (32) 

For small values of u or 1 X 1 we can ignore the terms in X in the energy denominator. 

.581/32/I-7 
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Moreover, for small X, x1 and x2 must lie very close to the Fermi surface to be in the 
domain of integration D’, so we can set 

Kl 2 = I$2 = 1 + O(U) (33) 

in Eq. (26) in this limit. The integrals can now be done as in the preceding section, 
to give 

P&U) M m,* 3ou3 
m 6 -(mt/m,* - 1)’ 

In Figure 2 the functions uP(u, m*, 6) and UP,,(U) are compared, for 6 = 2.12 and 
m* = rn;fi = 1, rn$ = 0.65. It will be seen that the differences are slight. Also plotted 
is uP(u, m* = 0.65, 6 = 0.65 x 2.12) which is seen to be significantly smaller. This is 
not surprising since m*/m essentially sets the scale. It is clear that the best approxi- 
mation to PRS is obtained using rn$ = m* in P(u, m", 8). 

FIG. 2. Curve A is UP&U) for m$ = m, t$ = 0.65, 8 = 2.12. Curve B is uP(u, m* = 1, 
8 = 2.12). Curve C is uP(u,m* = 0.65,6 = 0.65 x 2.12). 

4. EXAMPLE AND CONCLUSIONS 

As an example of the use of the Generalised Euler Function we give the calculation 
of the second order energy of Eq. (3) which contains the long range two body potential 
and an effective 2 body potential constructed from three body forces. This quantity was 
evaluated in our earlier work [2] for the case P, = Pp , i.e., with a free particle energy 
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spectrum.3 The necessity of evaluating it for the reference spectrum led to the devel- 
opments described above. 

We refer the reader to Ref. [2] for a detailed description of the potentials involved. 
The work here uses the same 3 body potential as Ref. 121 although that is not currently 
regarded as the best choice [12]. The results of the calculation for the choices P<(u) = 
P&4, PEG4 = P(u, m * = 0.65, S = 0.65 x 2.52), P,(u) = P(u,m* = I, S = 2.12), 
P (u) F = P&u, rng = I, rnz = 0.65, S = 2.12) are shown in Table II. 

TABLE 11 

The Second Order Energy < V[ Q/e V3) for Various Energy Spectra 

Form factor 11 Form factor III 

pF(u) -4.79 -5.15 
P(u,m* + 0.65; 6 = 0.65 x 2.12) -2.00 -2.06 
P(u,m* = I, 6 = 2.12) -2.62 --2.66 
P~s(u,rn$ = 1, rn: = 0.65, S = 2.12) -2.80 -2.86 

As one would have expected from an examination of Figures 1 and 2, introducing 
an energy gap in the spectrum substantially reduces the second order contribution to 
the energy. Moreover it is clear that the approximation of setting rnz equal to rn$ is 
good to better than 10% in computing second order energies. 

A number of other generalised Euler Functions have been developed in the literature 
These have concentrated, not on the direct term when rnz # rnt which is the subject 
of this paper, but on generalisations to exchange terms [ 11, 141 and non local potentials 
[15]. In these cases it was also found necessary to perform additional integrations 
numerically. The Euler method has also been extended to handle third order terms 
[ 161, additional numerical integrations being again required. 

To summarise, we have obtained an analytic expression for the reference spectrum 
Euler Function for the case rn$ = rnz, and have shown that it is a good approxi- 
mation to the exact reference spectrum Euler Function, at least for rnz > 0.65m,* . 

APPENDIX 

1. Euler’s Function PF(u) 

To evaluate the integral for P,(U) given in Eq. 8, it is most convenient to write the 
integral in Cartesian coordinates, taking X in the x direction, and writing ICY = (x, y, z) 
and ICY = (x’, y’, z’). 

‘F(*) = m 
1 

dK1 dx2 2u(2u + x - x*) . 

3 Unfortunately the effective potential in this earlier work was slightly in error. This has been 
corrected here, so the figure in table II is not identical to the result published there. 
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.;-: 

0 

lo1 lb1 

FIG. 3. The circles are unit circles centred on 0 and P, which are separated by 2u. The shaded 
region, rotated about OP, is the region of integration for K* . That for K~ is similar. In figure (a) 
O<u<l,andinfigure(b)u> 1. 

The domain of integration D’ is shown in Fig. 3. Two cases can be clearly 
distinguished, according as u > 1 or u < 1. Accordingly we set 

P&d = Pl(4 for O<u<l 
and 

pm = p2w for u>l. 

We consider the case u > 1 first, because it is the simpler, in that 

120u 
‘(‘) = 167~~ -1 dx dy dz dx’ dy’ dz’ 

1 
~+yz+zz<l 2242u + x - x’) 
Y'2+P+z'2<1 

and the domain of integration is particularly simple. The integrals over y, z and y’, z’ 
introduce factors 27~(1 - x2) and 27~(1 - ~‘2) respectively so that 

P2(u) = ; j-1 dx(1 - x2) j;I dx’(1 - x’~) 2U ; x _ x, . 

Finally the x’ and then the x integral can be performed to give the result of Eq. (14). 
When 1 u j < 1, the domain D’ depends on U, as is shown in Fig. 3(a). The integrals 

over y, z and y’, z’ can still be readily performed to give 

PI(u) = ; jG dx dx’ 2u KF’xx) x, . 
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It is convenient to write G = G, u G, v G, v G, where 

G,={(x,x’)/u<x<i,u<x’<1) 

G, = {(x, x’) / u < x < I, 1 < x’ < 1 + 2~) 
G3 = {(x, x’) I 1 < x < 1 + ZU, U < X’ < 1) 
G, = {(x, x’) 1 1 < x < I + 24 1 < x’ < 1 + 224. 

The function K depends on the location of (x, x’), 

K(X, -Y’) = 16u2(u - X)(U - x’) for (x, x’) E G1 
K(X, X’) = 4U(U - X)(1 - X”) 
K(X, X’) = 41((1 - X2)@ - X’) 

K(.Y, .Y’) = (1 - X2)( 1 - X’*) 

for (x, x’) E G, 

for (x, x’) E G, 
for (s, x’) E G4 

Once again the integral over (x, x’) can be done analytically to obtain Eq. (13). 
Euler gave useful approximations valid as u + 0 and as 11 + CYJ. 

2. The Case m* = mX h n 

ln this case the integrand is different, but the y, z, y’, z’ integrals can still be per- 
formed as described above. Then we have the integral, for ~ u j < 1 

P(ll, m”, 8) = :’ g s dx dx’ K(X, X’) 
G a/211 + 2u + x - x’ . 

The integrals are still tractable, since the denominator is a linear form in x and x’, 
which gives logarithmic terms at worst, on performing the x’ integral. One then has to 
integrate terms like j Q(x) In x dx where Q(x) is a polynomial. With R(x) = J Q(X) dx 
this integral may be written as JR’(x) In x dx, which yields to an integration by parts. 
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